
MergeSort

This algorithm is based on a simple observation.
Suppose you have n names on pieces of paper
divided into two piles, and each pile is already
sorted. You can merge those two sorted piles
into one sorted with no more than n
comparisons. At each step you compare the top
(smallest) element from each pile and pick up
the smaller of the two. When one of the piles is
empty you pick up all of the rest in one step.

In data structures terms we can merge two
sorted lists whose sizes sum to n into one sorted
list in time O(n).

The MergeSort algorithm is an easy recursion:

To sort a list of n items split it into two halves,
recursively sort the halves, and merge them
back into one sorted list. The base case for
the recursion is having only one element in
the list, in which case there is nothing to sort.

Before we give code for this, think about how it
works:

[2 9 1 6 5]

[2 9] [1 6 5]

[2] [9]

[1 6]

[5][1] [6]

[2 9]

[1 5 6]

[1 6]

[1 2 5 6 9]

The tree with blue edges represents the recursive call; the
list is broken down into small and smaller pieces until the
pieces are of size 1.

The tree with red edges represents the calls to merge. The
small lists are merged into larger and larger sorted lists.

All of the work happens in the calls to merge. How many
comparisons are there? Start with the row of n lists of size
1. It takes a total of n comparisons to merge all of these
into n/2 lists of size 2. Each element is in one of these. It
then takes n comparisons to merge all of these lists of size
2 into n/4 lists of size 4. And so we work our way up the
red tree, using n comparisons to go from one level to the
next.

How many levels are there? Whether we look at
the red tree or the blue one there are log(n) levels -
- you can only divide a list of size n in half log(n)
times until it gets down to size 1. Alternatively, if
you start with lists of size 1, you can only double
their sizes log(n) times until you get a list of size n.
Either way, there are log(n) levels and we do n
comparisons on each level, so that gives us
n*log(n) comparisons for the entire sort.

Result: MergeSort uses no more than n*log(n)
comparisons to sort n items and runs in time
Q(n*log(n)).

Implementing MergeSort is not hard.

First, the recursive version needs more parameters
than just the array being sorted, so the top-level
call just sets up the arguments for the recursive
call:

public static <E extends Comparable<? super E>>void
MergeSort(E[] array) {

Object[] temp = new Object[array.length];
MergeSort(array, 0, array.length-1, temp);

}

The arguments are:
• The array being sorted.
• The first and last indices of the region being

sorted.
• A temporary array to help with the merging.

By passing this as one of the arguments we
avoid the expense of allocating arrays every
time we recurse.

As we said, the recursive MS method splits the
region being sorted into two pieces, recursively
sorts them, and then merges them back together:

private static <E extends Comparable<? super E>> void
MergeSort(E[] A, int first, int last, Object[] temp) {

if (first < last) {
int mid = (first+last)/2;
MergeSort(A, first, mid, temp);
MergeSort(A, mid+1, last,temp);
merge(A, first, mid, last, temp);

}
}

The merge method has more code but is conceptually
quite simple. We have two consecutive regions of the
array; both are sorted and we want to merge them into
one sorted list.

We keep and index variable at the next element of
each portion. We compare the values stored at these
two indices and copy the smaller of them into the next
open slot in the temp array.

This continues until we run out of one portion or the
other. When that happens we just add the remaining
portion to the temp array. Finally, after everything is
merge onto temp in the correct order, we copy temp
back over the original data.

public static <E extends Comparable<? super E>> void
merge(E[] A, int first, int mid, int last, Object[] temp) {

int p1 = first;
int p2 = mid+1;
int p = first;
while (p1 <=mid && p2 <= last) {

if (A[p1].compareTo(A[p2]) < 0){
temp[p] = A[p1];
p1 += 1;

}
else {

temp[p] = A[p2];
p2 += 1;

}
p += 1;

}

// Here is the "cleanup" portion of the merging, after we have run
// out of elements in one of the two arrays being merged:

while (p1 <= mid) {
temp[p] = A[p1];
p1 += 1;
p += 1;

}
while(p2 <= last) {

temp[p] = A[p2];
p2 += 1;
p += 1;

}
for (int i = first; i <= last; i++)

A[i] = (E) temp[i];
}

